
© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

WAP WTAI
Version 08-Nov-1999

Wireless Application Protocol
Wireless Telephony Application Interface Specification

Disclaimer:

This document is subject to change without notice.

Version 08-Nov-1999 Page 2(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Contents

1 SCOPE... 4

2 DOCUMENT STATUS .. 5

2.1 COPYRIGHT NOTICE... 5
2.2 ERRATA... 5
2.3 COMMENTS.. 5

3 REFERENCES ... 6

3.1 NORMATIVE REFERENCES.. 6
3.2 INFORMATIVE REFERENCES ... 6

4 DEFINITIONS AND ABBREVIATIONS .. 7

4.1 DEFINITIONS .. 7
4.2 ABBREVIATIONS .. 8

5 WTA BACKGROUND .. 9

5.1 WTAI LIBRARIES .. 9
5.2 EVENT HANDLING ... 9

6 WTA INTERFACE .. 10

6.1 WTAI FUNCTION LIBRARIES... 10
6.2 WTAI API DELIMITERS .. 10
6.3 WTAI URI SCHEME ... 11
6.4 WTAI FUNCTION DEFINITION FORMAT... 11
6.5 TELEPHONE NUMBERS .. 12

7 PUBLIC WTAI ... 13

7.1 MAKE CALL... 13
7.2 SEND DTMF TONES.. 14
7.3 ADD PHONEBOOK ENTRY .. 15

8 NETWORK COMMON WTA.. 16

8.1 NETWORK EVENTS .. 16
8.2 VOICE CALL CONTROL .. 18

8.2.1 Setup Call ... 18
8.2.2 Accept Call ... 19
8.2.3 Release Call .. 20
8.2.4 Send DTMF Tones .. 20
8.2.5 Call Status... 21
8.2.6 List Call .. 22

8.3 NETWORK TEXT .. 23
8.3.1 Send Text... 23
8.3.2 Read Text .. 24
8.3.3 Remove Text.. 24
8.3.4 GetFieldValue... 25

8.4 PHONEBOOK .. 27
8.4.1 Write Phonebook Entry... 28
8.4.2 Read Phonebook Entry ... 29
8.4.3 Remove Phonebook Entry... 30
8.4.4 GetFieldValue... 30
8.4.5 Change Phonebook Entry ... 31

Version 08-Nov-1999 Page 3(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.5 CALL LOGS .. 32
8.5.1 Last Dialled Numbers ... 32
8.5.2 Missed Calls.. 33
8.5.3 Received Calls .. 34
8.5.4 GetFieldValue... 35

8.6 MISCELLANEOUS ... 36
8.6.1 Indication.. 36
8.6.2 Terminate WTA User Agent .. 37
8.6.3 Protect WTA User Agent Context ... 37

APPENDIX A WTAI URI AND WMLSCRIPT FUNCTION LIBRARIES .. 38

APPENDIX B WTAI PREDEFINED ERROR CODES .. 40

APPENDIX C EXAMPLES USING WTAI .. 41

APPENDIX D PREDEFINED FIELD NAMES.. 43

APPENDIX E STATIC CONFORMANCE REQUIREMENTS... 44

E.1 CLIENT FEATURES.. 44
E.2 SERVER FEATURES... 47

Version 08-Nov-1999 Page 4(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

1 Scope

Wireless Application Protocol (WAP) is a result of continuous work to define an industry wide specification for
developing applications that operate over wireless communication networks. The scope for the WAP Forum is to define a
set of specifications to be used by service applications. The wireless market is growing very quickly, and reaching new
customers and services. To enable operators and manufacturers to meet the challenges in advanced services, differentiation
and fast/flexible service creation WAP defines a set of protocols in transport, session and application layers. For
additional information on the WAP architecture, refer to “Wireless Application Protocol Architecture Specification"
[WAP].

This document outlines the extensions to the WAP Application Environment (WAE) to support Wireless Telephony
Applications. The specifics of the Wireless Telephony Applications are introduced in the form of an interface. The
acronym WTAI is used in the document to denote the Wireless Telephony Application Interface. For maximum benefit,
the reader should be somewhat familiar with WML [WML] and WMLScript [WMLScript].

Version 08-Nov-1999 Page 5(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

2 Document Status

This document is available online in the following formats:

• PDF format at http://www.wapforum.org/.

2.1 Copyright Notice
© Copyright Wireless Application Protocol Forum Ltd, 1999. Terms and conditions of use are available from the Wireless
Application Protocol Forum Ltd. web site at http://www.wapforum.org/docs/copyright.htm.

2.2 Errata
Known problems associated with this document are published at http://www.wapforum.org/

2.3 Comments
Comments regarding this document can be submitted to the WAP Forum in the manner published at
http://www.wapforum.org/

http://www.wapforum.org/docs/copyright.htm

Version 08-Nov-1999 Page 6(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

3 References

The following section describes references relevant to this document.

3.1 Normative references
[ISO8601] “Data elements and interchange formats - Information interchange - Representation of dates and

times”, International Organization For Standardization (ISO), 15-June-1988

 “Data elements and interchange formats - Information interchange - Representation of dates and
times, Technical Corrigendum 1”, International Organization For Standardization (ISO) -Technical
Committee ISO/TC 154, 01-May-1991

[RFC2119] "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997. URL:
ftp://ds.internic.net/rfc/rfc2119.txt

[RFC1630] "Uniform Resource Identifiers (URI)", T. Berners-Lee, et al., June 1994. URL:
ftp://ds.internic.net/rfc/rfc1630.txt

[WAE] "Wireless Application Environment Specification", WAP Forum, 1998. URL:
http://www.wapforum.org/

[WAP] "Wireless Application Protocol Architecture Specification", WAP Forum, 1998. URL:
http://www.wapforum.org/

[WML] "Wireless Markup Language", WAP Forum, 1999. URL: http://www.wapforum.org/

[WMLScript] "WMLScript Language Specification", WAP Forum, 1999. URL: http://www.wapforum.org/

[WSP] "Wireless Session Protocol Specification", WAP Forum, 1999. URL: http://www.wapforum.org/

[WTA] "Wireless Telephony Application Specification", WAP Forum, 1999. URL:
http://www.wapforum.org/

[XML] "Extensible Markup Language (XML), W3C Proposed Recommendation 10-February-1998, REC-
xml-19980210", T. Bray, et al, February 10, 1998. URL: http://www.w3.org/TR/REC-xml

3.2 Informative references
 [RFC1738] "Uniform Resource Locators (URL)", T. Berners-Lee, et al., December 1994. URL:

ftp://ds.internic.net/rfc/rfc1738.txt

Version 08-Nov-1999 Page 7(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

4 Definitions and abbreviations

The following section describes definitions and abbreviations common to this document.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

4.1 Definitions
The following are terms and conventions used throughout this specification.

Card - a navigable part of a WML document (deck). May contain information to present on the screen, instructions for
gathering user input, etc.

Client - a device (or application) that initiates a request for connection with a server.

Content - synonym for resources.

Deck - a WML document. May contain WMLScript.

Device - a device is a network entity that is capable of sending and receiving packets of information and has a unique
device address. A device can act as both a client and a server within a given context or across multiple contexts. For
example, a device can service a number of clients (as a server) while being a client to another server.

Server - a device (or application) that passively waits for connection requests from one or more clients. A server may
accept or reject a connection request from a client.

User - a user is a person who interacts with a user-agent to view, hear, or otherwise use a rendered content.

User Agent - a user-agent (or content interpreter) is any software or device that interprets WML, WMLScript or resources.
This may include textual browsers, voice browsers, search engines, etc.

WML - the Wireless Markup Language is a hypertext markup language used to represent information for delivery to a
narrowband device, eg a phone.

WMLScript - a scripting language used to program the mobile device. WMLScript is an extended subset of the
JavaScript scripting language.

Version 08-Nov-1999 Page 8(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

4.2 Abbreviations
For the purposes of this specification, the following abbreviations apply.

API Application Programming Interface

CGI Common Gateway Interface

DCS Digital Communications System

DTMF Dual Tone Multi-Frequency

GSM Global System for Mobile Communication

OS Operating System

PCS Personal Communications System

PDC Personal Digital Cellular

RFC Request For Comments

URI Uniform Resource Identifier [RFC1630]

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAE Wireless Application Environment [WAE]

WAP Wireless Application Protocol [WAP]

WTA Wireless Telephony Applications [WTA]

WTAI Wireless Telephony Applications Interface [WTAI]

WWW World Wide Web

Version 08-Nov-1999 Page 9(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

5 WTA Background

The WAP WTAI features provide the means to create Telephony Applications, using a WTA user-agent with the
appropriate WTAI function libraries. A typical example is to set-up a mobile originated call using the WTAI functions
accessible from either a WML deck/card or WMLScript.

The application model for WTA is based on a WTA user-agent, executing WML and WMLScript. The WTA user-agent
uses the WTAI function libraries to make function calls related to network services. The WTA user-agent is able to receive
WTA events from the mobile network and pushed content, like WML decks and WTA events, from the WTA server.
WTA events and WTAI functions make it possible to interact and handle resources, for call control etc., in the mobile
network.

The WTA server can invoke applications dynamically using content push with WML and WMLScript.

5.1 WTAI Libraries
The WTAI features are partitioned into a collection of WTAI Function libraries. The type of function and its availability
determines where the different functions are specified. The WTAI function libraries are accessible from both WML, using
URL’s, or from WMLScript using the scripting function libraries.

These functions may initiate an interaction between the mobile and the network. The function then typically terminates
independently from the started network procedure. So any result delivered by the function call will not reflect the outcome
of this procedure, which itself may result in events.

Example: A “user busy” condition is not reported by the return value of the “Setup Call” Function but is delivered by the
“call cleared” event.

Network Common WTAI The most common features that are available in all networks. They are only accessible
from the WTA user-agent. Examples of functions are call setup and answer incoming call.

Network Specific WTAI Features that are only available in certain types of networks. Operator specific features
may also reside in this set.

Public WTAI Simple features that are available to third party applications executing using the standard
WAE user-agent.

5.2 Event Handling
WTA event is one method that can be used to convey the change of state, in the WTA server or the mobile network. It’s in
the nature of network events to arise asynchronously from applications in the WTA user-agent and without any assumable
order.

The WTA user-agent can be setup to act on a WTA event. WTA events must be mapped into URL’s, indicating the content
that must be loaded to handle the WTA event, either using the WTA event table, or can be handled dynamically, from
within the WTA user-agent context using temporary event binding.

See more details on the event handling in the WTA Specification [WTA].

Version 08-Nov-1999 Page 10(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

6 WTA Interface

6.1 WTAI Function Libraries
The WTAI functions are divided into libraries depending on type of function. A function library can also be specific to a
certain type of network, and then a "well-known" network name is included in the name of the library. The WTAI
specification defines the set of predefined WTAI function libraries for public and network common WTAI, listed below.
Network specific WTAI function libraries are specified as addenda to the WTAI specification.

Table 1, Public WTAI Function Libraries

Function Library Name Description of Library

Public WTAI “wp” Public available WTAI functions.

Table 2, Network Common WTAI Function Libraries

Function Library Name Description of Library

Voice Call
Control

“vc” Voice Call Control library. Handles call setup and control of device during an ongoing
call

Network Text “nt” Network Text library. Sending and retrieval of network text.

Phonebook “pb” Phonebook library. Manages the entries in the device phonebook.

Call Logs “cl” Call Logs library. Used for accessing different kinds of call logs in the device.

Miscellaneous “ms” Handling of miscellaneous features. An Example is logical indications.

6.2 WTAI API Delimiters
All parameters are assumed to be of type string, unless otherwise specified. The WTAI functions are accessed using the
WTAI URI scheme, a CGI like style parameter scheme, or by using the defined WMLScript calls.

Notations used for the WTAI syntax:

• < > Angle brackets denotes an enumerated parameter

• [] Square brackets denote an optional section.

• | Vertical bar denotes a pair of mutually exclusive options

• ()* Repeat none or multiple times

• *() Repeat one or multiple times

Specification of parameters:

A general rule is to always specify all input and output parameters unless otherwise stated. The WTA user-agent should not
fail if a result parameter is not specified. The recommended procedure in this instance is to discard the result.

Version 08-Nov-1999 Page 11(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

6.3 WTAI URI Scheme
Access to the WTAI function libraries from WML can be handled through URI “calls” using the dedicated WTAI URI
encoding scheme. Using a predefined reference to the specific WTAI function library together with the actual function
name forms the WTAI URI. The WTAI URI library identifier can be used to identify the library. An example of a
predefined library is “WTAVoiceCall”, specifying the common call control features.

A set of “well-known” network library names will be used to specify the WTAI URI’s for the network specific features.

WTAI Functions are named using URI’s. URI’s are defined in [RFC1630]. The character set used to specify URI’s is
also defined in [RFC1630]. Consequently characters such as space, used in a WTAI URI, must be escaped, see
[RFC1630] for more details on escaping.

wtai://<library>/<function> (; <parameter>)* [! <result>]

Table 3, WTAI URI scheme

<library> Name that identifies the type of function, ie Voice Call Control uses the library name “vc”.

<function> Function identifier within specific library. An example is “ac” for the function “Accept Call” residing
in the library “Network Common WTA”.

<parameter> Zero or more parameters to be sent to the function. Delimiter between subsequent parameters must be
a semicolon “;”.

<result> Start of the result data section is indicated by an exclamation mark “!”. Result is zero or more names
of variables that will be set in the WTA user-agent context as a result from the function call. Delimiter
between subsequent result data must be a semicolon “;”.

6.4 WTAI Function Definition Format
Description

This is where the function is described.

URI: The URI form of the function.

WMLScript: The WMLScript form for the function.

Function ID: The number of the function in its library.

Parameters: Describes the identified parameters.

Output: Describes the output of the function. See Appendix B for WTAI predefined error codes.

Examples: Gives an example for function use as a URI Method.

And an example of the function as a Script.

Associated
Events:

This section lists WTA events that may occur after the function call has been initiated. An example is
the function “Accept Call”. An associated event in this case would be “Call Cleared”.

Notes: Extra notes that may be helpful.

Version 08-Nov-1999 Page 12(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

6.5 Telephone Numbers
The following BNF specifies the formats for phone numbers and DTMF digits that are valid in WTAI function calls (URI
and script API), if not stated otherwise in the specification of the function:

phone-number = international-phone-number / national-phone-number

international-phone-number = "+" 1*phonedigit

national-phone-number = 1*phonedigit

phonedigit = DIGIT

DIGIT = <any US-ASCII digit "0".."9">

dtmf-seq = 1*dtmf-digit

dtmf-digit = "*" / "#" / "A" / "B" / "C" / "D" / "," / DIGIT

Version 08-Nov-1999 Page 13(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

7 Public WTAI

The Public WTAI functions are available to applications not originating from the network WTA server, ie third party
server applications. The handling of public applications differs from the network WTAI in that the user must be able to
cancel any specific operation before it is carried out. An example of an application, from a third party service provider,
could be a “Phone number Guide” to customer services. The listed numbers are in fact “identifiers”, URI’s, that call the
“Public WTAI” function “makeCall”.

Name: WTAPublic

Library ID: 512

Description: This library contains a public function that presents a number that can be dialled.

7.1 Make Call
Description

This function is used to initiate a mobile originated call using the specified number. This number must be displayed to the
user prior to place the call. The user must explicitly acknowledge the operation.

The Make Call function can be used from within any application, not only WTA, to present the user with a number that
can be dialled.

URI: wtai://wp/mc ; <number> [!<result>]

WMLScript: makeCall(number);

Function ID: 0

Parameters: <number> = String:

Destination number to call. May use any valid telephony number characters and digits.

Output: <result> = Integer:

Zero if successful or a negative value in case of failure, the WTAI error code.

Examples: URI: wtai://wp/mc; 5554367

WMLScript: WTAPublic.makeCall("5554367");

Associated
Events:

 -

Notes: The call must be terminated using the standard MMI.

Version 08-Nov-1999 Page 14(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

7.2 Send DTMF Tones
Description

Send DTMF tone sequence through an active voice connection. The user must explicitly or implicitly acknowledge the
operation. For instance, an acknowledgement made once for the public Make Call function could also be valid for all calls
of the function Send DTMF Tones during that call. Or, acknowledgement can be made for each call of the Send DTMF
function. This is implementation dependant.

URI: wtai://wp/sd ; <dtmf> [! <result>]

WMLScript: sendDTMF(dtmf);

Function ID: 1

Parameters: <dtmf> = String:

Any valid sequence of standard DTMF characters.

Output: <result> = Integer:

Zero if successful or a negative value in case of failure, the WTAI error code.

Examples: URI: wtai://wp/sd; 555*1234

WMLScript: WTAPublic.sendDTMF ("555*1234”);

Associated
Events:

-

Notes: Like for the Make Call public function, the call must be terminated using the standard MMI.

Version 08-Nov-1999 Page 15(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

7.3 Add Phonebook Entry
Description

Add a new entry to the phonebook to the next available entry. The name and number to be added must be displayed to the
user. The user has to confirm ALL changes made to the phonebook.

In case of unsuccessful operation, the output contains a negative number identifying the WTAI error code.

URI: wtai://wp/ap;<number>;<name> [! <result>]

WMLScript: addPBEntry(number, name);

Function ID: 2

Parameters: <number> = String:

Phone number to be stored.

<name> = String:

Name that will be associated with the phone number.

Output: <result> = String:

The return value is "0" (zero) if successful or a value below zero indicating the WTAI error code.
Predefined relevant errors are (see error codes values in Appendix B, table 5) :

• "illegal number of parameters"

• "out of memory"

Examples: URI: wtai://wp/ap; 5551234; GENE;

WMLScript: WTAPublic.addPBEntry("5554367", "EINSTEIN");

Associated
Events:

-

Notes: -

Version 08-Nov-1999 Page 16(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8 Network Common WTAI

Functions defined in this chapter apply to all types of mobile networks that WAP is intended to. Network specific
functions are defined in addenda to this document.

8.1 Network Events
WTAI specifies the names of the WTA events that map to the mobile networks, native events. These mobile network
events convey the state of services in the mobile network. They may be handled by the active context or can be used to
start the WTA user-agent with a new context.

Table 4, Predefined network events

Event Parameters Description

cc/ic id, callerID Incoming Call indication. An incoming call has reached the user-agent and may be picked up from
the application using the WTAI function “Accept Call”.

< id>:

Identity generated by the user-agent itself, to be used with subsequent call control operations.

<callerID>:

Contains the number of the calling party if available to the user-agent. Otherwise an empty string
will be returned.

cc/cl id, result Call Cleared. The connected call, or the call that has been placed but not yet connected, is
disconnected (independent of reason).

<id>:

The identity of the call that has been cleared.

<result>:

The result indicates why the call is cleared. See Appendix B, "WTAI predefined error codes".

cc/co id, callerID Call Connected. The called party has lifted the handset or accepted the incoming call.

<id>:

The identity of the call that has been answered or for which a notification has been received by the
called party.

<callerID>:

Contains the number of the answering party if available to the user-agent. Otherwise an empty string
will be returned.

cc/oc id, callerID Outgoing Call indication. An outgoing call is being setup by a client application e.g. using the
WTAI function "Setup Call".

<id>:

Identity generated by the user-agent itself, to be used with subsequent call control operations.

<callerID>:

Contains the number of the called party. Otherwise an empty string will be returned.

Version 08-Nov-1999 Page 17(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

cc/cc id Alert indication. An outgoing call is now ringing at the B-Party.

<id>:

 Identity of the call.

cc/dtmf resultstring DTMF sent

<resultstring> = String:

DTMF sequence sent.

nt/it id, sender Incoming Network Text indication. The client has received a Network Text message.

<id>:

The identity of the received network text message generated by the user-agent itself.

<sender>:

Contains address information about the sending party if available to the user-agent. Otherwise an
empty string will be returned.

nt/st Text-ID Network text sent

<Text-ID> :

Internal identity of the text sent.

ms/ns camping,
networkName,
notCamping
Cause

Network Status indication. The value of one, or more, of the defined parameters has changed. Other
possible causes of this event could be hand over, change in network location, change of network etc.

<camping> = BOOL:

TRUE if the phone is camping on the network and is able to make and receive calls, otherwise
FALSE.

<networkName> = String:

The string that is presented as standby information to the end user, identifying the network that the
phone is camping on.

<notCampingCause> = String:

0 = No network found.

1 = Only forbidden networks found.

Version 08-Nov-1999 Page 18(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.2 Voice Call Control
During a call, the following WTAI functions can be used, where applicable, to control the operation of available call
control features such as accept call and release call.

Name: WTAVoiceCall

Library ID: 513

Description: This library contains functions that are related to voice call control, common for all
"well-known" networks.

8.2.1 Setup Call

Description

Set-up a mobile originated voice call to the specified number. The mode parameter indicates how the call should be
handled if the context in the WTA user-agent terminates. There are two modes, “drop” and “keep”. “Drop” means that the
OS will release the call if the context should be restarted. “Keep” makes it possible to maintain the call even after the
current context has terminated.

URI: wtai://vc/sc ; <number> ; <mode> [! <result>]

WMLScript: setup(number, mode);

Function ID: 0

Parameters: <number> = String:

Destination number to call. May use any valid telephony number characters and digits.

<mode>:

0 = drop, Drop Call when current context is removed.

1 = keep, Keep Call after current context is removed.

Output: <result> = String:

The return value is the identity of the created call or a negative number in case of failure, the WTAI
error code.

Examples: URI: wtai://vc/sc; 5554367;1

WMLScript: WTAVoiceCall.setup("5554367", 0);

Associated
Events:

cc/cl, Call Cleared

cc/co, Call Connected

Notes: -

Version 08-Nov-1999 Page 19(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.2.2 Accept Call
Description

Accepts an incoming voice call or waiting call and lifts the handset. The “id” is the ordinal number assigned by the in-
device call handler, and will be returned if the call is carried out. If the call, for some reason, can not be carried out the
return value contains an error code.

Any party or the network can terminate a call. When a call is terminated the Call Cleared event will be generated and may
be detected by the application.

The mode parameter indicates how the call should be handled if the context in the WTA user-agent terminates. There are
two modes, “drop” and “keep”. “Drop” means that the OS will release the call if the context should be restarted. “Keep”
makes it possible to maintain the call even after the current context has terminated.

URI: wtai://vc/ac;<id>; <mode> [! <result>]

WMLScript: accept(id, mode);

Function ID: 1

Parameters: <id> = String:

The identity of the call to be accepted.

<mode> = String:

0 = drop, Drop Call when current context is removed.

1 = keep, Keep Call after current context is removed.

Output: <result> = String:

The return value is the identity of the created call or a negative number in case of failure, the WTAI
error code.

Examples: URI: wtai://vc/ac; 1;1

WMLScript: WTAVoiceCall.accept ("1”, 0);

Associated
Events:

cc/cl, Call Cleared

cc/co, Call Connected

Notes: -.

Version 08-Nov-1999 Page 20(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.2.3 Release Call

Description

Release the specified voice call. Calls involved in a multiparty group can be released using the call identity.

URI: wtai://vc/rc;<id> [! <result>]

WMLScript: release(id);

Function ID: 2

Parameters: <id> = String:

The identity of the call to be released.

Output: <result> = String:

The return value is the identity of the released call or a negative number in case of failure, the WTAI
error code.

Examples: URI: wtai://vc/rc; 1

WMLScript: WTAVoiceCall.release ("1”);

Associated
Events:

cc/cl, Call Cleared

Notes: -

8.2.4 Send DTMF Tones

Description

Send DTMF tone sequence through the specified voice call. If the call succeeds the integer value zero is returned. In case
of unsuccessful outcome an error code will be returned.

URI: wtai://vc/sd;<id>;<dtmf> [! <result>]

WMLScript: sendDTMF(id, dtmf);

Function ID: 3

Parameters: <id> = String:

The identity of the call on which to send the DTMF tones

<dtmf> = String:

Any valid sequence of standard DTMF characters

Output: <result> = String:

Integer value below zero indicates unsuccessful execution.

Examples: URI: wtai://vc/sd; 2;555*1234

WMLScript: WTAVoiceCall.sendDTMF ("2","555*1234”);

Associated
Events:

cc/dtmf, DTMF sent

Notes: -

Version 08-Nov-1999 Page 21(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.2.5 Call Status
Description

Retrieves parameters associated with a specific call. In case of unsuccessful operation, the output contains a negative
number identifying the WTAI error code.

URI: wtai://vc/cs;<id>;<field> [! <result>]

WMLScript: callStatus (id, field);

Function ID: 4

Parameters: <id> = String:

Identity of the call.

<field> = String:

Name of field that is used to retrieve parameters associated with the call. Predefined fields are:

! ‘number’:

The number of the other party. This field is mandatory.

! ‘name‘:

The name of the other party. In case no name exists the number value is returned. This field is optional.

! ’duration’, ‘durationHMS’:

The duration of the call up to the current state of the call. If (at a specific state) no duration info is
possible to return an empty value will be returned. Use of duration implies that a device specific time
representation may be used (may depend on user preferences; 12/24 hour timekeeping system, time-zone
etc.).

Use of durationHMS is based on the [ISO8601] format. The following representation MUST be used:

HHH = 3 digit hour, Total number of hours (“000” … “999”*)

MM = 2 digit minute (“00” ... “59”)

SS = 2 digit second (“00” ... “59”)

Both fields are optional.

Example: durationHMS=“2505010” means 250 hours 50 minutes and 10 seconds.

*) Editors note: Three digits for hours should be sufficient for the foreseeable future. However it is
recommended that a WAP service parse (using appropriate WMLScript functions) in the order right to
left. (I.e. begin with seconds). In case a device is able to return more than three (3) digits for the hours
all remaining digits (up to the leftmost position) should be treated as part of the total number of hours.

! ‘state’:

The state of the call. The value of the state field can be one of the following:

active = an active call

hold = the call is on hold

waiting = the incoming call is not answered yet

connecting = the outgoing call is in the connecting phase

disconnecting = the call is in the disconnecting phase

released = the call has been released

This field is mandatory.

Version 08-Nov-1999 Page 22(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

! 'mode':

The mode of the call as defined when the call was setup using the functions Setup Call or Accept Call.
The value of the mode field can be either ‘keep’ or ‘drop’. This field is mandatory.

Output: <result> = String:

String value associated with the requested field. Value below zero indicates unsuccessful execution.

Examples: URI: wtai://vc/cs;5;name;

WMLScript: WTAVoiceCall.callStatus("5", "name");

Associated
Events:

-

Notes: If the value of a supported field can not be retrieved, the empty string (“”) is returned. If the field is not supported
the WTAI error code (see Appendix B, Table 5) is returned.

8.2.6 List Call
Description

Returns the identities of the calls currently handled in the device and available to the WTA user-agent. The function is
called repeatedly to retrieve information of all calls.

URI: wtai://vc/lc;<id> [! <result>]

WMLScript: listCall (id)

Function ID: 5

Parameters: <id> = String:

Call list identity of the call. The id should index calls in the order of creation. If the id has the value of
"0", or if the id is empty (“”), the oldest call is returned, if id has the value of "1", the second oldest call
is returned, and so on.

Output: <callid> = String:

The returned value is the identity of the call. This value can for example be used as input parameter to
the function Call Status.

In case there is no call matching the requested id, <callid> contains the WTAI error code (see Appendix
B, Table 5).

Examples: WMLScript: WTAVoiceCall.listCall(0);

Associated
Events:

-

Notes: -

Version 08-Nov-1999 Page 23(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.3 Network Text
The Network Text WTAI function library handles sending and retrieval of text messages from the network text application
in the device. Using the read function, entries in the network text application are retrieved as "structs", a formatted
character string containing fields with associated data. Data from each field can then be retrieved using the GetFieldValue
function. There are six types of "well-known" field names required for a minimal implementation:

• text Contains the actual body of the network text message

• tstamp Timestamp – Contains the (local) time when the text message was sent

• tstamp_off The offset from GMT to the timezone of tstamp in multiples of ¼ hours

• tstamp_rec Contains the local time when the text message was received in the device

• address Contains the originating address (or destination address)

• status Contains information about the status (unread, read, written, sent)

The available “network text” functions are send, read, remove and getFieldValue.

Name: WTANetText

Library ID: 514

Description: This library contains functions that handles sending and retrieval of network text.

8.3.1 Send Text

Description

Sends a network text message, if feature is available in the network, to a destination identified by number.

URI: -

WMLScript: send (number, text);

Function ID: 0

Parameters: <number> = String:

Destination number. Any valid telephony characters and digits.

<text> = String:

Network text data structure, the text to send

Output: <result> = String:

Integer value below zero indicates unsuccessful execution.

Examples: WMLScript: WTANetText.send ("5554567”, “WAP Forum”);

Associated
Events:

nt/st, Network text sent

Notes: -

Version 08-Nov-1999 Page 24(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.3.2 Read Text

Description

Returns the network text data that may be stored in the device. Data is retrieved in the form of a field encoded character
string. Use the GetFieldValue to extract values for any specific fields.

URI: -

WMLScript: read (id);

Function ID: 1

Parameters: <id> = String:

Identity of network text to read. The id parameter should index messages sorted in a chronological
order. If id has the value of "0", or if id is empty (“”), the most recent message is returned, if id has the
value of "1", the second most recent message is returned, and so on.

Output: <struct> = String:

The name of variable to receive the network text data structure. Integer value below zero indicates
unsuccessful execution.

Examples: WMLScript: WTANetText.read (3);

Associated
Events:

-

Notes: -

8.3.3 Remove Text

Description

Removes a network text message identified by id. If no record can be identified an error code will be returned.

URI: -

WMLScript: remove (id);

Function ID: 2

Parameters: <id> = String:

Identity of network text message to be deleted.

Output: <result> = String:

Integer value below zero indicates unsuccessful execution.

Examples: WMLScript: WTANetText.remove (3);

Associated
Events:

-

Notes: -

Version 08-Nov-1999 Page 25(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.3.4 GetFieldValue

Description

Retrieves the value, from the string <struct>, identified by “field”.

URI: -

WMLScript: getFieldValue(struct,field);

Function ID: 3

Parameters: <struct> = String:

Formatted character string containing the fields with the associated data.

<field> = String:

Name of field containing the value that will be retrieved from <struct>.

Output: <result> = String:

String value associated with the requested field. Value below zero indicates unsuccessful execution.
Encoded message structure. There are six types of predefined fields:

! text:

A string containing the body of the network text message. This field is mandatory.

! tstamp:

A string containing information about when the text message was sent. The tstamp value MUST be
represented in the local time of the (originating) relaying network text element (e.g. GSM SMSC). This
implies that if the receiving device cannot handle time zones, the default time zone is that of the home
network.

The following reduced representation based on [ISO8601] MUST be used:

YYYYMMDDHHMMSS

Where: YYYY = 4 digit year (“0000” ... “9999”)

MM = 2 digit month (“01”=January, “02”=February ... “12”=December)

DD = 2 digit day (“01”, “02” ... “31”)

HH = 2 digit hour, 24-hour timekeeping system (“00” ... “23”)

MM = 2 digit minute (“00” ... “59”)

SS = 2 digit second (“00” ... “59”)

This field is mandatory.

Example: tstamp=“19990430064500” means 6:45 in the morning on the 30th of April 1999.

! tstamp_off:

An integer containing tstamp’s offset from Co-ordinated Universal Time (GMT) in multiples of 15
minutes

This field is mandatory unless unsupported by the device

! tstamp_rec:

A string containing information about when the text message was received (or in the case of mobile
originated Network Text, when it was sent).

The tstamp_rec value is represented in the local time of the device. The format is the same as that of

Version 08-Nov-1999 Page 26(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

tstamp.

This field is optional

! address:

A string containing the originating address (or in the case of mobile
originated network text, the destination address).

This field is mandatory unless unsupported by the device

! status:

A string containing the status of the message. The following values have been
pre-defined:

unread= a received message that has not been read

read = a received message that has been read

written = a message that has been written but not sent

sent = a message that has been sent

This field is mandatory unless unsupported by the device.

In case there is no message matching the requested id, <struct> contains the WTAI error code (see
Appendix B, Table 5).

Editor’s Note: Regarding “semi-mandatory” fields. The timestamp of a GSM SMS includes a field
indicating the time-zone offset from GMT. Therefore, all devices that handle GSM SMS – not all GSM
devices! – are mandated to convey this information through the tstamp_off field to a WTANetText
caller.

Examples: WMLScript: WTANetText.getFieldValue($struct,”text”);

Associated
Events:

-

Notes: If the value of a supported field can not be retrieved, the empty string (“”) is returned. If the field is not supported
the WTAI error code (see Appendix B, Table 5) is returned.

Version 08-Nov-1999 Page 27(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.4 Phonebook
The Phonebook WTAI function library handles requests for operations towards the phonebook application. The requested
operations can be used for storage and retrieval of phonebook entries. It is also possible to search the phonebook for a
certain number, name or identity. The Phonebook in general will be specified with an extensible format regarding available
fields in order to facilitate “contacts”, (”address info”), applications.

Using the read function, phonebook entries are retrieved as "structs", a formatted character string containing fields with
associated data. Data from each field can then be retrieved using the GetFieldValue function. There are three types of
"well-known" field names required for a minimal implementation:

• name Contains the entry's name. This type is based on the vCard FN name type. Example: Albert A. Einstein.

• number Contains the entry's telephone number. The telephone number format is described in section 6.5.

• id Contains the entry's id

The Phonebook functions are write, read, remove and getFieldValue.

Name: WTAPhoneBook

Library ID: 515

Description: This library contains functions that handle operation towards the phonebook
application1, such as storage and retrieval of phonebook entries.

1 Existence of a phonebook application is implementation dependent and is not within the scope of WAP to define

Version 08-Nov-1999 Page 28(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.4.1 Write Phonebook Entry

Description

Writes a new entry to the phonebook. Any previous phonebook entry with the same identity will be overwritten. If no
identity is specified (“”) the next available phonebook entry will be used and the new identity is returned.

In case of unsuccessful operation, the output contains a negative number identifying the WTAI error code.

URI: -

WMLScript: write(id, number, name);

Function ID: 0

Parameters: <id> = String:

Identity of the phonebook entry.

<number> = String:

Phone number to be stored

<name> = String:

Name that will be associated with the phone number.

Output: <result> = String:

Phonebook entry identity. A value below zero indicates an error.

Examples: WMLScript: WTAPhoneBook.write("2", "5554367", "EINSTEIN");

Associated
Events:

-

Notes: -

Version 08-Nov-1999 Page 29(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.4.2 Read Phonebook Entry
Description

Returns phonebook entries containing a value matched using the specified field. The function can also return sequential
entries following the last match. Entries should be returned sorted ascending, using the selected field as the sort-key, if
possible.

There are three predefined fields:

1. The identity of an entry (="id"). E.g. "0", "1", "2" …

2. The phone number (="number"). E.g. "+46555418466""

3. The name of an entry (="name"). E.g. "Albert Einstein"

URI: -

WMLScript: read(field, value);

Field is a string entity that identifies the name of a field containing the data indicated by value.

Function ID: 1

Parameters: <field> = string:

Predefined fields are: “id”, “number” and “name”. When using “id” or “number” then any preceding or
trailing spaces (“ “) in the value-parameter should be ignored. Additional fields may be used. If a
specific field is not supported an empty string (“”) shall be returned.

<value> = string:

Value is the actual data that is used when searching for a matching phonebook entry. The phonebook
field containing the value is defined by the field parameter.

Usage:

read (“”, “”) = Reset the phonebook search mode and removes any previous search criteria. This
function call returns an empty string (“”).

read (field, “”) = Read next entry following the last match or the first entry in case the phonebook search
mode have been previously reset. The function returns an empty string (“”) when all entries have been
searched. Entries with the value of the field set to an empty string (“”) are returned (in the sorting
sequence) after any non-empty values.

read (field, value) = Read the entry with the matching value or the next ascending value. Matching is
done from the start of the string. I.e.: Value = “alb” may match with “albert” but not directly with
“einstein, albert”. Matching is not case sensitive.

Output: <struct> = String:

Encoded message structure or an empty string in case "read (“”, “”)" is used or no match could be
found.

Examples: WMLScript: WTAPhoneBook.read("name", "Albert");

Associated
Events:

-

Notes: When searching the phonebook the sorting is implied by the selected field type. An implementation not supporting
sorting is assumed to return entries in the ascending order using the identity field.

Version 08-Nov-1999 Page 30(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.4.3 Remove Phonebook Entry
Description

Removes a phonebook entry. If the call succeeds then the result variables contains a zero. If the function fails then a
negative number will be returned indicating the WTAI error code.

URI: -

WMLScript: remove(id);

Function ID: 2

Parameters: <id> = String:

Identity of the phonebook entry.

Output: <result> = String:

Zero if successful. Integer value below zero indicates unsuccessful execution.

Examples: WMLScript: WTAPhoneBook.remove("2");

Associated
Events:

-

Notes: -

8.4.4 GetFieldValue

Description

Retrieves a value, from the string <struct>, identified by “field”.

URI: -

WMLScript: getFieldValue(struct,field);

Function ID: 3

Parameters: <struct> = String:

Formatted character string containing the fields with the associated data.

<field> = String:

Name of field containing the value that will be retrieved from <struct>.

Output: <result> = String:

String value associated with the requested field.

Examples: WMLScript: WTAPhoneBook.getFieldValue($struct,”name”);

Associated
Events:

-

Notes: If the field does not exist in <struct> then the result contains an empty string.

Version 08-Nov-1999 Page 31(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.4.5 Change Phonebook Entry
Description

Writes a change to an existing phonebook entry. Any previously stored value in the identified phonebook entry and field
will be overwritten.

In case of unsuccessful operation, the output contains a negative number identifying the WTAI error code.

URI: -

WMLScript: change(id, field, value);

Function ID: 4

Parameters: <id> = String:

Identity of the phonebook entry.

<field> = String:

Name of field (part of a phonebook entry) to be changed.

<value> = String:

Value to be written to the specified field.

Predefined fields are:

! "name", "number":

Use of name implies that a “name” is stored in a format transparent to the device specific phonebook
storage (no distinction between family name and first name).

number implies that a “number” is stored in a format transparent to the device specific phonebook storage
(no distinction between parts of a number e.g. area code).

Output: <result> = String:

 Phonebook entry identity (handle). A value below zero indicates an error.

Examples: WMLScript: WTAPhoneBook.change("5", "name", "Cathal Kennedy");

Associated
Events:

-

Notes: If the field is not supported the WTAI error code (see Appendix B, Table 5) is returned.

Version 08-Nov-1999 Page 32(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.5 Call Logs
The functions specified in the following sections make it possible to access different types of call logs in the device. The
call logs may hold other information than just the phone number, for example information about when the call was
made/received.

Name: WTACallLog

Library ID: 519

Description: This library contains functions that enables access to call logs, common for all
"well-known" networks.

8.5.1 Last Dialled Numbers
Description

Returns entries from the “last dialled numbers” log. The GetFieldValue function is used to extract the value of a specific
field from an entry.

URI: -

WMLScript: dialled (id);

Function ID: 0

Parameters: <id> = string:

Identity of the entry to be returned. A value of “0” returns the entry corresponding to the last dialled
number, a value of “1” returns the entry corresponding to the second last dialled number, and so on. If id
is empty (“”), the entry corresponding to the last dialled number is returned.

Output: <struct> = String:

Encoded message structure. There are two types of predefined field names:

! number:

A string containing the phone number without blanks (“ ”). If the phone number can not be provided
from a non-empty entry in the log for any reason, the field should contain an empty string (“”). This
field is mandatory.

! timestamp:

A string containing information about when the entry was written to the log (if supported by the device).
This field is optional.

In case the end of the log is reached, this <struct> has the value of a WTAI error code "Id not found"
(-1, see Appendix B, Table 5).

Examples: WMLScript: WTACallLog.dialled("1");

Associated
Events:

-

Notes:

Version 08-Nov-1999 Page 33(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.5.2 Missed Calls
Description

Returns entries from the “missed calls” log. The GetFieldValue function is used to extract the value of a specific field from
an entry.

URI: -

WMLScript: missed (id);

Function ID: 1

Parameters: <id> = string:

Identity of the entry to be returned. A value of “0” returns the entry corresponding to the last missed
call, a value of “1” returns the entry corresponding to the second last missed call, and so on. If id is
empty (“”), the entry corresponding to the last missed call is returned.

Output: <struct> = String:

Encoded message structure. There are three types of predefined field names:

! number:

A string containing the phone number without blanks (“ ”). If the phone number can not be provided
from a non-empty entry in the log for any reason, the field should contain an empty string (“”). This
field is mandatory.

! timestamp:

A string containing information about when the entry was written to the log (if supported by the device).
This field is optional.

! class:

If the phone number is not provided by the number field (the number field contains an empty string),
this field should contain information about the reason (provided by the device). This field is optional.

In case the end of the log is reached, this <struct> has the value of a WTAI error code "Id not found"
(-1, see Appendix B, Table 5).

Examples: WMLScript: WTACallLog.missed ("");

Associated
Events:

-

Notes:

Version 08-Nov-1999 Page 34(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.5.3 Received Calls
Description

Returns entries from the “received calls” log. The GetFieldValue function is used to extract the value of a specific field
from an entry.

URI: -

WMLScript: received (id);

Function ID: 2

Parameters: <id> = string:

Identity of the entry to be returned. A value of “0” returns the entry corresponding to the last received
call, a value of “1” returns the entry corresponding to the second last received call, and so on. If id is
empty (“”), the entry corresponding to the last received call is returned.

Output: <struct> = String:

Encoded message structure. There are three types of predefined field names:

! number:

A string containing the phone number without blanks (“ ”). If the phone number can not be provided
from a non-empty entry in the log for any reason, the field should contain an empty string (“”). This
field is mandatory.

! timestamp:

A string containing information about when the entry was written to the log (if supported by the device).
This field is optional.

! class:

If the phone number is not provided by the number field (the number field contains an empty string),
this field should contain information about the reason (provided by the device). This field is optional.

In case the end of the log is reached, this <struct> has the value of a WTAI error code "Id not found"
(-1, see Appendix B, Table 5).

Examples: WMLScript: WTACallLog.received("0");

Associated
Events:

-

Notes:

Version 08-Nov-1999 Page 35(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.5.4 GetFieldValue

Description

Retrieves the value, from the string <struct>, identified by “field”.

URI: -

WMLScript: getFieldValue(struct,field);

Function ID: 3

Parameters: <struct> = String:

Formatted character string containing the fields with the associated data.

<field> = String:

Name of field containing the value that will be retrieved from <struct>.

Output: <result> = String:

String value associated with the requested field. Value below zero indicates unsuccessful execution.

Examples: WMLScript: WTACallLog.getFieldValue($struct,”number”);

Associated
Events:

-

Notes: If the field does not exist in <struct> then the result contains an empty string.

Version 08-Nov-1999 Page 36(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.6 Miscellaneous
Various utility functions used with the WTA user-agent.

Name: WTAMisc

Library ID: 516

Description: This library contains functions for controlling logical device features like indications.

8.6.1 Indication

Description

Turns logical indication on or off. The appearance in the MMI is implementation dependent. An example would be a
logical indication that can be visual and/or audible. An indication can also be set to show for example the number of email
messages.

URI: -

WMLScript: indication(type, operation, count);

Function ID: 0

Parameters: <type> = String:

0 = incoming speech call
1 = incoming data call
2 = incoming fax call
3 = call waiting
4 = received text
5 = voice mail notification
6 = fax notification
7 = e-mail notification

8-15 = extra notifications

<operation> = String:

1 = Set.

Activates the selected indication, i.e. starts ringing, animating etc.

2 = Reset.

Changes the indicator back to the state it was before the set function was called or in case there
are no previous set operation the default status for the indication will be set instead.

<count> = String:

The number of new text, voice mails etc.

Output: <result> = Integer:

Zero if successful or a negative value in case of failure, the WTAI error code.

Examples: WMLScript: WTAMisc.indication(5, 1, 3);

Associated
Events:

-

Notes: Count is not mandatory to show by the WTA user-agent, how count is used depends on the implementation.

Version 08-Nov-1999 Page 37(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

8.6.2 Terminate WTA User Agent

Description

This function removes the content and terminates the context for the WTA user-agent.

URI: wtai://ms/ec [!<result>]

WMLScript: endcontext;

Function ID: 1

Parameters: -

Output: <result> = Integer:

Zero if successful or a negative value in case of failure, the WTAI error code.

Examples: URI: wtai://ms/ec

WMLScript: WTAMisc.endcontext;

Associated
Events:

-

Notes: The newcontext attribute defined in [WML] is used when the context only needs to be cleared.

8.6.3 Protect WTA User Agent Context

Description

This function protects the WTA user-agent context from being interrupted by other means except for the end-user. Default
is that the context is not protected. For reading the current protection status the function is called without the mode
parameter.

URI: -

WMLScript: protected (mode);

Function ID: 2

Parameters: <mode> = String:

0 = Do not protect context.

1 = Protect context.

Leaving this field empty (“”) results in only reading the current protection status.

Output: <result> = String

0 = Context is not protected.

1 = Context is protected.

Integer value below zero indicates unsuccessful execution.

Examples: WMLScript: WTAMisc.protected(1);

Associated
Events:

-

Notes: -

Version 08-Nov-1999 Page 38(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Appendix A WTAI URI and WMLScript Function Libraries
In the tables below, the URI and WMLScript Function Libraries Calls are summarised. The arguments have been left out
in order to increase readability. The figures in the column named "Lib/Func ID" denote the Library and Function IDs.

Public WTA
Public WTAI

Lib/Func ID URI Script call Description

512.0 wtai://wp/mc WTAPublic.makeCall Make a call

512.1 wtai://wp/sd WTAPublic.sendDTMF Send DTMF Tones

512.2 wtai://wp/ap WTAPublic.addPBEntry Add a new phonebook entry

Network Common WTA
Voice Call Control

Lib/Func ID URI WMLScript call Description

513.0 wtai://vc/sc WTAVoiceCall.setup Setup a new call

513.1 wtai://vc/ac WTAVoiceCall.accept Accept an incoming call

513.2 wtai://vc/rc WTAVoiceCall.release Release a call

513.3 wtai://vc/sd WTAVoiceCall.sendDTMF Send DTMF Tones

513.4 wtai://vc/cs WTAVoiceCall.callStatus Retrieve parameters for a
specific call

513.5 wtai://vc/lc WTAVoiceCall.listCall Retrieve identities for all calls

Network Text

Lib/Func ID URI WMLScript call Description

514.0 - WTANetText.send Send network text

514.1 - WTANetText.read Read network text

514.2 - WTANetText.remove Remove network text

514.3 - WTANetText.getFieldValue Get Field Value

Version 08-Nov-1999 Page 39(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Phonebook

Lib/Func ID URI WMLScript call Description

515.0 - WTAPhoneBook.write Write phonebook entry

515.1 - WTAPhoneBook.read Read phonebook entry

515.2 - WTAPhoneBook.remove Remove phonebook entry

515.3 - WTAPhoneBook.getFieldValue Get Field Value

515.4 - WTAPhoneBook.change Change an existing phonebook entry

Call Logs

Lib/Func ID URI WMLScript call Description

519.0 - WTACallLog.dialled Read "last dialled numbers" log

519.1 - WTACallLog.missed Read "missed calls" log

519.2 - WTACallLog.received Read "received calls" log

519.3 - WTACallLog.getFieldValue Get Field Value

Miscellaneous

Lib/Func ID URI WMLScript call Description

516.0 - WTAMisc.indication Logical Indications

516.1 wtai://ms/ec WTAMisc.endcontext Terminates user-agent context

516.2 - WTAMisc.protected Sets/reads context protection
mode

Version 08-Nov-1999 Page 40(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Appendix B WTAI predefined error codes
Functions in the WTAI function library may return a result code indicating the outcome of a function call. In most cases a
positive integer indicates a successful outcome. WTAI defines a set of error codes, non-positive result codes, which can be
returned by the WTAI functions. Note! Not all codes are used by all functions. Codes in the range -1 to -63 are reserved
for WTA standard library functions. Network specific WTA must use codes in the range –64 to –127.

Table 5, WTAI predefined error codes

Error code Description

-1 Id not found. Function could not be completed.

-2 Illegal number of parameters, function could not be resolved due to missing parameters.

-3 Service not available or non-existent function.

-4 Service temporarily unavailable.

-5 Called party is busy.

-6 Network is busy.

-7 No answer, ie call setup timed out.

-8 Unknown.

-9 Out of memory

-10 to -63 Reserved for future use by WTA standard library functions.

-64 to –127 Network specific error codes

Version 08-Nov-1999 Page 41(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Appendix C Examples using WTAI
WTAI functions can be called in either of the following two ways. First a WTAI function can be called as a URL call. The
second way a WTAI function can be performed is via a Script. The two examples show how a simple problem could be
solved using either WML or WMLScript.

Here is an example of a WTAI function as a URL call:

<WML>

 <CARD>

 <DO TYPE="ACCEPT" TASK="GO" URL="#eFood"/>

 Welcome!

 </CARD>

 <CARD NAME=“eFood”>

<DO TYPE="ACCEPT" TASK="GO" URL="wtai://wp/mc;$FoodNum"/>

Choose Food:

<SELECT KEY="FoodNum">

 <OPTION VALUE="5556789">Pizza</OPTION>

 <OPTION VALUE="5551234">Chinese</OPTION>

<OPTION VALUE="5553344">Sandwich</OPTION>

 <OPTION VALUE="5551122">Burger</OPTION>

 <SELECT>

 </CARD>

</WML>

Version 08-Nov-1999 Page 42(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Here is an example of a WTAI function as a Script call:

WMLSCRIPT:

 function CallFood(N) {

 var i = wtaVoiceCall.setup(N;1);

 if (i >= 0) {

// Call is good, show call is done

Browser.setVar("Msg", "Called");

Browser.setVar("Nmbr", N);

 }

 else {

// Call failed, we could tell user why

Browser.setVar("Msg", "Error");

Browser.setVar("Nmbr", $i);

 }

 Browser.go("displayMsg");

 }

<WML>

<CARD>

 <DO TYPE="ACCEPT" TASK="GO" URL="/script#CallFood($FoodNum)"/>

 Choose Food:

 <SELECT KEY="FoodNum">

<OPTION VALUE="5556789">Pizza</OPTION>

 <OPTION VALUE="5551234">Chinese</OPTION>

<OPTION VALUE="5553344">Sandwich</OPTION>

 <OPTION VALUE="5551122">Burger</OPTION>

 <SELECT>

</CARD>

<CARD NAME="displayMsg">

 Call Status: $Msg $Nmbr

</CARD>

</WML>

Notice the capability of error checking and reporting in the Script example.

Version 08-Nov-1999 Page 43(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Appendix D Predefined field names
Some WTAI functions use encoded structures with predefined fields. For information, these field names are summarised in
the table below.

Field Name Description

id The identity of an entry in an in-device data store.

number A phone number.

name A name often stored together with a number in a data store entry.

address The originating address of a network text message.

text The text in a network text message.

timestamp Information about when a call log entry has been changed or a network text
message has been received or sent.

duration Duration of a call using a device specific time representation.

durationHMS Duration of a call based on the [ISO8601] format.

costValue A device specific cost value that may or may not be related to any known
currency.

costCurrency A device specific currency type used with the costValue.

status The status of a network text message (unread/read/written/sent).

state The state of a call (active/hold/waiting/connecting/disconnecting/released).

mode The mode of a call (keep/drop).

class The reason why a number in a log for Missed Calls could not be retrieved.

Version 08-Nov-1999 Page 44(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

Appendix E Static Conformance Requirements
This static conformance clause defines a minimum set of features that should be implemented to ensure that WTA could
interact with the mobile network. A feature can be optional or mandatory. Although a function is mandatory it may not
work, e.g. if the corresponding feature is not implemented in the mobile or in the network or if the user has no subscription
for this feature.

E.1 Client features

E.1.1 Public WTAI Functions

Item Function Reference Status

WTAI_P_C001 Make Call 7.1 M

WTAI_P_C002 Send DTMF Tones 7.2 M

WTAI_P_C003 Add a new phonebook entry 7.3 M

E.1.2 Network Common WTAI Functions

E.1.2.1 Network Events

Item Function Reference Status

WTAI_CEV_C001 Incoming Call Indication (cc/ic) 8.1 M

WTAI_CEV_C002 Call Cleared (cc/cl) 8.1 M

WTAI_CEV_C003 Call Connected (cc/co) 8.1 M

WTAI_CEV_C004 Outgoing call indication (cc/oc) 8.1 M

WTAI_CEV_C005 Connecting call indication (cc/cc) 8.1 M

WTAI_CEV_C006 DTMF sent (cc/dtmf) 8.1 M

WTAI_CEV_C007 Incoming network text indication (nt/it) 8.1 M

WTAI_CEV_C008 Network text sent (nt/st) 8.1 M

WTAI_CEV_C009 Network status indication (ms/ns) 8.1 M

Version 08-Nov-1999 Page 45(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

E.1.2.2 Voice Call Control

Item Function Reference Status

WTAI_CVC_C001 Setup Call 8.2.1 M

WTAI_CVC_C002 Accept Call 8.2.2 M

WTAI_CVC_C003 Release Call 8.2.3 M

WTAI_CVC_C004 Send DTMF Tones 8.2.4 M

WTAI_CVC_C005 Call status 8.2.5 M

WTAI_CVC_C006 List call 8.2.6 M

E.1.2.3 Network Text

Item Function Reference Status

WTAI_CNT_C001 Send Text 8.3.1 M

WTAI_CNT_C002 Read Text 8.3.2 M

WTAI_CNT_C003 Remove Text 8.3.3 M

WTAI_CNT_C004 GetFieldValue 8.3.4 M

E.1.2.4 Phonebook

Item Function Reference Status

WTAI_CPB_C001 Write Phonebook Entry 8.4.1 M

WTAI_CPB_C002 Read Phonebook Entry 8.4.2 M

WTAI_CPB_C003 Remove Phonebook Entry 8.4.3 M

WTAI_CPB_C004 GetFieldValue 8.4.4 M

WTAI_CPB_C005 Change phonebook entry 8.4.5 M

Version 08-Nov-1999 Page 46(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

E.1.2.5 Call Logs

Item Function Reference Status

WTAI_CCL_C001 Last Dialed Numbers 8.5.1 M

WTAI_CCL_C002 Missed Calls 8.5.2 M

WTAI_CCL_C003 Received Calls 8.5.3 M

WTAI_CCL_C004 GetFieldValue 8.5.4 M

E.1.2.6 Miscellaneous

Item Function Reference Status

WTAI_CM_C001 Indication 8.6.1 M

WTAI_CM_C002 Terminate WTA User Agent 8.6.2 M

WTAI_CM_C003 Protect WTA User Agent Context 8.6.3 M

E.1.3 WMLScript Bytecode Interpreter Capabilities

Item Function Reference Status

WTAI_INT_C001 Supports Public WTAI library identifier A M

WTAI_INT_C002 Supports Public WTAI functions identifiers A M

WTAI_INT_C003 Supports Voice Call Control library identifier A M

WTAI_INT_C004 Supports Voice Call Control function identifiers A M

WTAI_INT_C005 Supports Network Text library identifier A M

WTAI_INT_C006 Supports Network Text function identifiers A M

WTAI_INT_C007 Supports Phonebook library identifier A M

WTAI_INT_C008 Supports Phonebook function identifiers A M

WTAI_INT_C009 Supports Call Logs library identifier A M

WTAI_INT_C010 Supports Call Logs function identifiers A M

WTAI_INT_C011 Supports Miscellaneous library identifier A M

WTAI_INT_C012 Supports Miscellaneous function identifiers A M

Version 08-Nov-1999 Page 47(47)

© Copyright Wireless Application Protocol Forum Ltd, 1999
All rights reserved

E.2 Server features

E.2.1 WMLScript Encoder Capabilities

Item Function Reference Status

WTAI_ENC_S001 Supports Public WTAI library identifier A M

WTAI_ENC_S002 Supports Public WTAI functions identifiers A M

WTAI_ENC_S003 Supports Voice Call Control library identifier A M

WTAI_ENC_S004 Supports Voice Call Control function
identifiers

A M

WTAI_ENC_S005 Supports Network Text library identifier A M

WTAI_ENC_S006 Supports Network Text function identifiers A M

WTAI_ENC_S007 Supports Phonebook library identifier A M

WTAI_ENC_S008 Supports Phonebook function identifiers A M

WTAI_ENC_S009 Supports Call Logs library identifier A M

WTAI_ENC_S010 Supports Call Logs function identifiers A M

WTAI_ENC_S011 Supports Miscellaneous library identifier A M

WTAI_ENC_S012 Supports Miscellaneous function identifiers A M

	Scope
	Document Status
	Copyright Notice
	Errata
	Comments

	References
	Normative references
	Informative references

	Definitions and abbreviations
	Definitions
	Abbreviations

	WTA Background
	WTAI Libraries
	Event Handling

	WTA Interface
	WTAI Function Libraries
	WTAI API Delimiters
	WTAI URI Scheme
	WTAI Function Definition Format

	Public WTAI
	Network Common WTAI
	Voice Call Control
	Setup Call

	Network Text
	Phonebook
	Write Phonebook Entry

	Call Logs
	Miscellaneous
	
	
	
	
	WTAI URI and WMLScript Function Libraries
	WTAI predefined error codes
	Examples using WTAI
	Predefined field names
	Static Conformance Requirements
	Client features
	Public WTAI Functions
	Network Common WTAI Functions
	WMLScript Bytecode Interpreter Capabilities

	Server features
	WMLScript Encoder Capabilities

